
Hormone - Part 2

Hormones acting through cylic AMP: · Cyclic AMP (CAMP) was first discovered by Earl Sutherland in 1961. · Action is through G-Protein coupled receptors (first messenger) (i) When any ligand binds, the GPCKs (GPCKs) acteivate heterotrimenic GTP binding regulatory GPCR Gprotein adenynyl cyclases (ACs) Proteins (G-Proteins) • Different G-Proteins are present in the cells 5'-AMP-That are coupled with different receptors phosphorylation of target proteins and activating défférent effortor proteins. (ii) G-protein acteirates Adenyl cyclane · cellular response (iii) Adenyl cyclone converts ATP -> cAMP (3,5-yulic AMP) and phosphodoesterme hydrolyses CAMP -> 5'AMP. · Cyclic AMP is a second messenger produced in the cell in response to achivation of adenylate cyclase by active GI-protein. · During hormonal stimulation, cyclic AMP level in cell increases several times. (iv) Second messenger activates PKA • The CAMP activates the enzyme PKA (cyclic AMP dependent protein kinone) . PKA is a tetrameric molecule having two regulatory (R) and two catalytic (() subunits (R2(2) . This complex has no achivity. But CAMP binds to the negulatory subunit and déssociates the tetramer into regulatory and catalytic subunits. The catalytic subunit is now free to act. (M) Kinase Phosphonylates the Enzyme.

Catalytic subunit then transfers a phosphate group from ATP to different enzymes proteins.

G-moteins:
About 30 differnt
About 30 differnt Gi-proteins are identified
each being wed
for different signal
transduction pathways
(

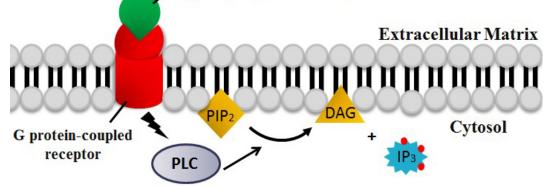
,	Ga class	Initiating signal	Downstream signal
	Gs Gr-shimwabnj	β-adrenergic amines,)glucagon, PTH, TSH, corticotrophin, many others	Stimulates adenylate cyclase
	Gi 1- inh i bi boy)	Acetylcholine, α adrenergic amines, many neurotransmitters, chemokines	Inhibits adenylate cyclase
	Gq	Acetylcholine, α adrenergic amines, many neurotransmitters, TRH	Increases IP3 and intracellular calcium
	Gt (Transducin)	Photons	Stimulates cGMP phosphodiesterase

Wiki Gruppet	G- protein family	a-subunit	Gene	Signal transduction	Use/Receptors (examples)	Effects (examples)		
	G _i -family (InterPro : <i>IPR001408</i> ⊮)							
	G _{i/o}	α _i , α _o	GNAO1 , GNAI1 , GNAI2 , GNAI3	Inhibition of adenylate cyclase, opens K ⁺ -channels (via β/γ subunits), closes Ca ²⁺ - channels	Muscarinic M_2 and M_4 , ^[8] chemokine receptors, α_2 - Adrenoreceptors, Serotonin 5-HT ₁ receptors, Histamine H ₃ and H ₄ , Dopamine D ₂ - like receptors, type 2 cannabinoid receptors (CB2) ^[9]	Smooth muscle contraction, depress neuronal activity, interleukin secretion by human leukocytes ^[9]		
	Gt	α _t (Transducin)	GNAT1 , GNAT2	Activation of phosphodiesterase 6	Rhodopsin	Vision		
	G _{gust}	a _{gust} (Gustducin)	GNAT3	Activation of phosphodiesterase 6	Taste receptors	Taste		
	Gz	az	GNAZ	Inhibition of adenylate cyclase	Platelets	Maintaining the ionic balance of perilymphatic and endolymphatic cochlear fluids.		
	G _s -family (InterPro : <i>IPR000367</i> ₺)							
	Gs	α _s	GNAS	Activation of adenylate cyclase	Beta- adrenoreceptors; Serotonin 5-HT ₄ , 5-HT ₆ and 5-HT ₇ ; Dopamine D_1 -like receptors, Histamine H ₂ , type 2 cannabinoid receptors ^[9]	Increase heart rate, Smooth muscle relaxation, stimulate neuronal activity, interleukin secretion by human leukocytes [9]		
_	G _{olf}	a _{olf}	GNAL	Activation of adenylate cyclase	olfactory receptors	Smell		
	G _q -family (InterPro : <i>IPR000654</i> ⊮)							
	Gq	α _q , α ₁₁ , α ₁₄ , α ₁₅ , α ₁₆	GNAQ , GNA11 , GNA14ଝ, GNA15ଝ	Activation of phospholipase C	α_1 - Adrenoreceptors, Muscarinic M ₁ , M ₃ , and M ₅ , ^[8] Histamine H ₁ , Serotonin 5-HT ₂ receptors	Smooth muscle contraction, Ca ²⁺ flux		
	G _{12/13} -far	_{12/13} -family (InterPro : <i>IPR000469</i> 교)						
	G _{12/13}	α ₁₂ , α ₁₃	GNA12, GNA13	Activation of the Rho family of GTPases		Cytoskeletal functions, Smooth muscle contraction		

Protein kinares :

More than thow and protein kinares are now known.

. Some important are listed below :


Signal molecule	Second messenger	Protein kinase	Туре	Substrates
Hormones (glucagon, epinephrine, HSL, ADH, glycogen, ACTH, PTH, etc.	cAMP	Protein kinase A	Ser/Thr	Enzymes like phosphorylase, PFK2, CREBs, etc.
Nitric oxide, AMP	cGMP	Protein kinase G	Ser.Thr	Myosin, transducin
Serotonin, TRH	Calcium, IP3	Cam kinase	Ser/Thr	Exocytosis, smooth muscle contraction
Oxytocin, PDGF	DAG	Protein kinase C	Ser/Thr	Transcription factors, ion channel transporters
Growth factors, cytokines	PIP3	Protein kinase B	Ser/Thr	Glycogen metabolism, glucose transport, death signals like BAD
Insulin and insulin like growth factors	RTK in receptor	Tyrosine kinase	Tyr	IRS-1 (Insulin response substrate 1), IRS-2, MAP kinase, PDK
GH, prolactin, cytokines	RTK in receptor	Janus kinase (JAK)	Tyr	STAT (Signal transducers and activators of transcription

Calcium bared Signal Transduction: Calcium is an important intracellular regulator of cell function like : (i) contraction of mucles (ii) secrition of hormones (iii) Secretion of Neurotransmitters (iv) Cell devision (V) Regulation of Gene regulation. 1. Ligand Binding · Rapid but transient increase in cytosolic caluium noult GPCR 2. Gα and RTK Gα_a activation PLC activation from either opening I by Gα and RTK Ca^{2†} channels in 5. IP3R binding and Ca²⁺ release the plasma membrane/ IP₃ phosphorylation Ca2+ channels in ER. by ITP3K 4. $PIP_2 \rightarrow IP_3 + DAG$ Nucleus . The released Cant can be TP3 rapidly taken up by ER to terminate the noponse.

Phospholepone C Pathway:

- Specific signals can trigger a sudden increase in cytoplasmic Ca²⁺ levels to 500-1000 nM by opening channels in ER or plasma members.
 The most common signaling pathway that increases cytoplasmic Ca²⁺ is PLC pathway.
- (i) Many cell surface receptors, including G-Protein coupled receptors and receptor tyrosine kinases, activate PLC enzyme.
- (ii) PLC mer hydrolysic of membrane phospholipid PIP2 to form IP3 and diacylglycenol (DAG), two classic 2° messenger.
- (iii) DAG attaches to plasma memb and recruits Protein kinner C (PKC) iv) IP3 differes to ER and is bound to IP3 receptor.
- M The IP3 receptor serves as a Ca²⁺ channel, and release Ca²⁺ from ER.
- (vi) The Ca2+ bind to PKC and other proteins & achivate them.

Ligand (ex. growth factor)

© MedNotes || Download MedNotes app (mednotes in) from Playstor !